Effect of shape biaxiality on the phase behavior of colloidal liquid-crystal monolayers.
نویسندگان
چکیده
We extend our previous work on monolayers of uniaxial particles [J. Chem. Phys., 2014, 140, 204906] to study the effect of particle biaxiality on the phase behavior of liquid-crystal monolayers. Particles are modelled as board-like hard bodies with three different edge lengths σ1 ≥ σ2 ≥ σ3, and the restricted-orientation approximation (Zwanzig model) is used. A density-functional formalism based on the fundamental-measure theory is used to calculate phase diagrams for a wide range of values with the largest aspect ratio κ1 = σ1/σ3 ∈ [1,100]. We find that particle biaxiality in general destabilizes the biaxial nematic phase already present in monolayers of uniaxial particles. While plate-like particles exhibit strong biaxial ordering, rod-like ones with κ1 > 21.34 exhibit reentrant uniaxial and biaxial phases. As particle geometry is changed from uniaxial- to increasingly biaxial-rod-like, the region of biaxiality is reduced, eventually ending in a critical-end point. For κ1 > 60, a density gap opens up in which the biaxial nematic phase is stable for any particle biaxiality. Regions of the phase diagram, where packing-fraction inversion occurs (i.e. packing fraction is a decreasing function of density), are found. Our results are compared with the recent experimental studies on nematic phases of magnetic nanorods.
منابع مشابه
Experimental realization of biaxial liquid crystal phases in colloidal dispersions of boardlike particles.
Biaxial nematic and biaxial smectic phases were found in a colloidal model system of goethite (alpha-FeOOH) particles with a simple boardlike shape and short-range repulsive interaction. The macroscopic domains were oriented by a magnetic field and their structure was revealed by small angle x-ray scattering. In accordance with theoretical predictions, biaxiality appears in a system with partic...
متن کاملEffect of Molecular Flexibility on the Nematic-to-Isotropic Phase Transition for Highly Biaxial Molecular Non-Symmetric Liquid Crystal Dimers
In this work, a study of the nematic (N)-isotropic (I) phase transition has been made in a series of odd non-symmetric liquid crystal dimers, the α-(4-cyanobiphenyl-4'-yloxy)-ω-(1-pyrenimine-benzylidene-4'-oxy) alkanes, by means of accurate calorimetric and dielectric measurements. These materials are potential candidates to present the elusive biaxial nematic (NB) phase, as they exhibit both m...
متن کاملEffect of colloidal Particles associated with the liquid bridge in sticking during drying in Superheated Steam
It is very important in the design of a drying system is to evaluate sticking behaviour of the materials goes under drying. A new approach to the sticking issue is applied in this study by carrying out a sticking test for the liquid associated with the materials under study. It was found that the liquid bridge is responsible of the initial sticking of the materials to the contact surface and th...
متن کاملElectric field induced biaxiality and the electro-optic effect in a bent-core nematic liquid crystal
We report the observation of a biaxial nematic phase in a bent-core molecular system using polarizing microscopy, electro-optics, and dielectric spectroscopy, where we find that the biaxiality exists on a microscopic scale. An application of electric field induces a macroscopic biaxiality and in consequence gives rise to electro-optic switching. This electro-optic effect shows significant poten...
متن کاملMelting of colloidal crystal films.
We study melting mechanisms in single and polycrystalline colloidal films composed of diameter-tunable microgel spheres with short-ranged repulsive interactions and confined between two glass walls. Thick films (>4 layers), thin-films (≤4 layers), and monolayers exhibit different melting behaviors. Thick films melt from grain boundaries in polycrystalline solid films and from film-wall interfac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 9 شماره
صفحات -
تاریخ انتشار 2015